Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Biol ; 22(3): e3002536, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38427708

RESUMO

Associating values to environmental cues is a critical aspect of learning from experiences, allowing animals to predict and maximise future rewards. Value-related signals in the brain were once considered a property of higher sensory regions, but their wide distribution across many brain regions is increasingly recognised. Here, we investigate how reward-related signals begin to be incorporated, mechanistically, at the earliest stage of olfactory processing, namely, in the olfactory bulb. In head-fixed mice performing Go/No-Go discrimination of closely related olfactory mixtures, rewarded odours evoke widespread inhibition in one class of output neurons, that is, in mitral cells but not tufted cells. The temporal characteristics of this reward-related inhibition suggest it is odour-driven, but it is also context-dependent since it is absent during pseudo-conditioning and pharmacological silencing of the piriform cortex. Further, the reward-related modulation is present in the somata but not in the apical dendritic tuft of mitral cells, suggesting an involvement of circuit components located deep in the olfactory bulb. Depth-resolved imaging from granule cell dendritic gemmules suggests that granule cells that target mitral cells receive a reward-related extrinsic drive. Thus, our study supports the notion that value-related modulation of olfactory signals is a characteristic of olfactory processing in the primary olfactory area and narrows down the possible underlying mechanisms to deeper circuit components that contact mitral cells perisomatically.


Assuntos
Neurônios , Bulbo Olfatório , Camundongos , Animais , Bulbo Olfatório/fisiologia , Neurônios/fisiologia , Olfato/fisiologia , Odorantes , Sinapses/fisiologia
2.
Methods Mol Biol ; 2710: 185-193, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37688733

RESUMO

Cell type-specific labelling and manipulation using Cre-driver lines have become integral to analyses of neuronal circuits in the brain. To study how mitral cells of the olfactory bulb process olfactory information and how they contribute to behavior, an inducible Cre-driver line, Lbhd2-CreERT2, can be used. In this chapter, we describe two methods for administering tamoxifen. The first method achieves a dense recombination pattern using tamoxifen-containing food, while the second method involving an intraperitoneal injection is suited for sparse labelling.


Assuntos
Encéfalo , Alimentos , Injeções Intraperitoneais , Bulbo Olfatório , Tamoxifeno/farmacologia
3.
Elife ; 112022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35254262

RESUMO

Sensory systems are often tasked to analyse complex signals from the environment, separating relevant from irrelevant parts. This process of decomposing signals is challenging when a mixture of signals does not equal the sum of its parts, leading to an unpredictable corruption of signal patterns. In olfaction, nonlinear summation is prevalent at various stages of sensory processing. Here, we investigate how the olfactory system deals with binary mixtures of odours under different brain states by two-photon imaging of olfactory bulb (OB) output neurons. Unlike previous studies using anaesthetised animals, we found that mixture summation is more linear in the early phase of evoked responses in awake, head-fixed mice performing an odour detection task, due to dampened responses. Despite smaller and more variable responses, decoding analyses indicated that the data from behaving mice was well discriminable. Curiously, the time course of decoding accuracy did not correlate strictly with the linearity of summation. Further, a comparison with naïve mice indicated that learning to accurately perform the mixture detection task is not accompanied by more linear mixture summation. Finally, using a simulation, we demonstrate that, while saturating sublinearity tends to degrade the discriminability, the extent of the impairment may depend on other factors, including pattern decorrelation. Altogether, our results demonstrate that the mixture representation in the primary olfactory area is state-dependent, but the analytical perception may not strictly correlate with linearity in summation.


Assuntos
Percepção Olfatória , Neurônios Receptores Olfatórios , Animais , Camundongos , Neurônios/fisiologia , Odorantes , Bulbo Olfatório/fisiologia , Condutos Olfatórios/fisiologia , Percepção Olfatória/fisiologia , Olfato/fisiologia
4.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33443203

RESUMO

Activity of sensory and motor cortices is essential for sensorimotor integration. In particular, coherence between these areas may indicate binding of critical functions like perception, motor planning, action, or sleep. Evidence is accumulating that cerebellar output modulates cortical activity and coherence, but how, when, and where it does so is unclear. We studied activity in and coherence between S1 and M1 cortices during whisker stimulation in the absence and presence of optogenetic Purkinje cell stimulation in crus 1 and 2 of awake mice, eliciting strong simple spike rate modulation. Without Purkinje cell stimulation, whisker stimulation triggers fast responses in S1 and M1 involving transient coherence in a broad spectrum. Simultaneous stimulation of Purkinje cells and whiskers affects amplitude and kinetics of sensory responses in S1 and M1 and alters the estimated S1-M1 coherence in theta and gamma bands, allowing bidirectional control dependent on behavioral context. These effects are absent when Purkinje cell activation is delayed by 20 ms. Focal stimulation of Purkinje cells revealed site specificity, with cells in medial crus 2 showing the most prominent and selective impact on estimated coherence, i.e., a strong suppression in the gamma but not the theta band. Granger causality analyses and computational modeling of the involved networks suggest that Purkinje cells control S1-M1 phase consistency predominantly via ventrolateral thalamus and M1. Our results indicate that activity of sensorimotor cortices can be dynamically and functionally modulated by specific cerebellar inputs, highlighting a widespread role of the cerebellum in coordinating sensorimotor behavior.


Assuntos
Córtex Motor/metabolismo , Células de Purkinje/metabolismo , Córtex Somatossensorial/metabolismo , Animais , Córtex Cerebelar , Cerebelo/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Optogenética , Córtex Sensório-Motor , Núcleos Ventrais do Tálamo , Vibrissas/fisiologia
5.
PLoS Comput Biol ; 15(5): e1006475, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31059498

RESUMO

Inferior olivary activity causes both short-term and long-term changes in cerebellar output underlying motor performance and motor learning. Many of its neurons engage in coherent subthreshold oscillations and are extensively coupled via gap junctions. Studies in reduced preparations suggest that these properties promote rhythmic, synchronized output. However, the interaction of these properties with torrential synaptic inputs in awake behaving animals is not well understood. Here we combine electrophysiological recordings in awake mice with a realistic tissue-scale computational model of the inferior olive to study the relative impact of intrinsic and extrinsic mechanisms governing its activity. Our data and model suggest that if subthreshold oscillations are present in the awake state, the period of these oscillations will be transient and variable. Accordingly, by using different temporal patterns of sensory stimulation, we found that complex spike rhythmicity was readily evoked but limited to short intervals of no more than a few hundred milliseconds and that the periodicity of this rhythmic activity was not fixed but dynamically related to the synaptic input to the inferior olive as well as to motor output. In contrast, in the long-term, the average olivary spiking activity was not affected by the strength and duration of the sensory stimulation, while the level of gap junctional coupling determined the stiffness of the rhythmic activity in the olivary network during its dynamic response to sensory modulation. Thus, interactions between intrinsic properties and extrinsic inputs can explain the variations of spiking activity of olivary neurons, providing a temporal framework for the creation of both the short-term and long-term changes in cerebellar output.


Assuntos
Potenciais de Ação/fisiologia , Núcleo Olivar/fisiologia , Animais , Cerebelo/fisiologia , Fenômenos Eletrofisiológicos , Feminino , Junções Comunicantes/fisiologia , Masculino , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/fisiologia , Periodicidade
6.
Elife ; 72018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30561331

RESUMO

Cerebellar plasticity underlies motor learning. However, how the cerebellum operates to enable learned changes in motor output is largely unknown. We developed a sensory-driven adaptation protocol for reflexive whisker protraction and recorded Purkinje cell activity from crus 1 and 2 of awake mice. Before training, simple spikes of individual Purkinje cells correlated during reflexive protraction with the whisker position without lead or lag. After training, simple spikes and whisker protractions were both enhanced with the spiking activity now leading behavioral responses. Neuronal and behavioral changes did not occur in two cell-specific mouse models with impaired long-term potentiation at their parallel fiber to Purkinje cell synapses. Consistent with cerebellar plasticity rules, increased simple spike activity was prominent in cells with low complex spike response probability. Thus, potentiation at parallel fiber to Purkinje cell synapses may contribute to reflex adaptation and enable expression of cerebellar learning through increases in simple spike activity.


Assuntos
Potenciais de Ação/fisiologia , Cerebelo/fisiologia , Células de Purkinje/fisiologia , Reflexo/fisiologia , Vibrissas/fisiologia , Animais , Cerebelo/citologia , Potenciação de Longa Duração/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Estimulação Física , Tato
8.
Front Cell Neurosci ; 11: 346, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163057

RESUMO

Absence epilepsy is characterized by the occurrence of generalized spike and wave discharges (GSWDs) in electrocorticographical (ECoG) recordings representing oscillatory activity in thalamocortical networks. The oscillatory nature of GSWDs has been shown to be reflected in the simple spike activity of cerebellar Purkinje cells and in the activity of their target neurons in the cerebellar nuclei, but it is unclear to what extent complex spike activity is implicated in generalized epilepsy. Purkinje cell complex spike firing is elicited by climbing fiber activation and reflects action potential firing in the inferior olive. Here, we investigated to what extent modulation of complex spike firing is reflected in the temporal patterns of seizures. Extracellular single-unit recordings in awake, head-restrained homozygous tottering mice, which suffer from a mutation in the voltage-gated CaV2.1 calcium channel, revealed that a substantial proportion of Purkinje cells (26%) showed increased complex spike activity and rhythmicity during GSWDs. Moreover, Purkinje cells, recorded either electrophysiologically or by using Ca2+-imaging, showed a significant increase in complex spike synchronicity for both adjacent and remote Purkinje cells during ictal events. These seizure-related changes in firing frequency, rhythmicity and synchronicity were most prominent in the lateral cerebellum, a region known to receive cerebral input via the inferior olive. These data indicate profound and widespread changes in olivary firing that are most likely induced by seizure-related activity changes in the thalamocortical network, thereby highlighting the possibility that olivary neurons can compensate for pathological brain-state changes by dampening oscillations.

9.
J Neurosci ; 34(5): 1949-62, 2014 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-24478374

RESUMO

Whisker-based object localization requires activation and plasticity of somatosensory and motor cortex. These parts of the cerebral cortex receive strong projections from the cerebellum via the thalamus, but it is unclear whether and to what extent cerebellar processing may contribute to such a sensorimotor task. Here, we subjected knock-out mice, which suffer from impaired intrinsic plasticity in their Purkinje cells and long-term potentiation at their parallel fiber-to-Purkinje cell synapses (L7-PP2B), to an object localization task with a time response window (RW). Water-deprived animals had to learn to localize an object with their whiskers, and based upon this location they were trained to lick within a particular period ("go" trial) or refrain from licking ("no-go" trial). L7-PP2B mice were not ataxic and showed proper basic motor performance during whisking and licking, but were severely impaired in learning this task compared with wild-type littermates. Significantly fewer L7-PP2B mice were able to learn the task at long RWs. Those L7-PP2B mice that eventually learned the task made unstable progress, were significantly slower in learning, and showed deficiencies in temporal tuning. These differences became greater as the RW became narrower. Trained wild-type mice, but not L7-PP2B mice, showed a net increase in simple spikes and complex spikes of their Purkinje cells during the task. We conclude that cerebellar processing, and potentiation in particular, can contribute to learning a whisker-based object localization task when timing is relevant. This study points toward a relevant role of cerebellum-cerebrum interaction in a sophisticated cognitive task requiring strict temporal processing.


Assuntos
Aprendizagem por Associação/fisiologia , Cerebelo/citologia , Cerebelo/fisiologia , Potenciação de Longa Duração/fisiologia , Células de Purkinje/fisiologia , Vibrissas/inervação , Potenciais de Ação/fisiologia , Animais , Animais Geneticamente Modificados , Comportamento de Ingestão de Líquido/fisiologia , Feminino , Potenciação de Longa Duração/genética , Camundongos , Percepção de Movimento/fisiologia , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Tempo de Reação/fisiologia , Sinapses/fisiologia , Fatores de Tempo , Vigília , Privação de Água/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA